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GRAPHIC SEQUENCES 2

A nonnegative integer sequence π = (d1, . . . , dn) is graphic if π is
the degree sequence of some graph G.
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π=(5,4,4,3,2,2)

In this case, we say that G realizes or is a realization of π, and
write

π = π(G) or G = G(π).
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Question
Given a sequence of nonnegative integers π = (d1, . . . , dn), is π
graphic?
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For instance, consider π = (3, 3, 3, 3, 3, 3, 2, 2).

v

π=(3,3, 3,3,3.3, 2,2)
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Theorem (Havel 1955, Hakimi 1962)
If π = (d1, . . . , dn) is a nonincreasing sequence of nonnegative integers,
then π is graphic if and only if

π′ = (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn)

is graphic.
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Question
Given a sequence of nonnegative integers π = (d1, . . . , dn), is π
graphic?

1. Havel (1955)/Hakimi (1962): Recursive (and constructive)
characterization.

2. Erdős-Gallai Criteria (1960): Collection of n simple inequalities
(constructive proof in 2009 due to Tripathi, Venugopalan and
West).

3. G. Sierksma, and H. Hoogeveen (1991), “Seven Criteria for
Integer Sequences to be Graphic".



DIVERSITY OF REALIZATIONS 8

π=(3,3,3,3,3,3,3,3,3,3)



GENERAL QUESTIONS 9

Question
What properties occur within the family of realizations of a graphic
sequence π?
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Question (Forcible)
Given a graph property P and a graphic sequence π, does every
realization of π have P?

Question (Potential)
Given a graph property P and a graphic sequence π, does at least one
realization of π have P?
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then G has a hamiltonian (spanning) cycle.
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Many well-known theorems can be restated as forcible degree
sequence results.

Theorem (Dirac’s Theorem 1952)
If G is a graph of order n ≥ 3 and the minimum degree of G is at least n2 ,
then G has a hamiltonian (spanning) cycle.

Theorem (Dirac’s Theorem 1952)
If π is an n-term graphic sequence, and every entry of π is at least n2 ,
then π is forcibly hamiltonian.



“FORCIBLE" THEOREMS 11

Many well-known theorems can be restated as forcible degree
sequence results.

Theorem
If G is a planar graph on n vertices, then G has at most 3n− 6 edges.



“FORCIBLE" THEOREMS 11

Many well-known theorems can be restated as forcible degree
sequence results.

Theorem
If G is a planar graph on n vertices, then G has at most 3n− 6 edges.

Theorem
If π is an n-term graphic sequence with sum exceeding

6n− 12 = 2(3n− 6),

then π is forcibly nonplanar.



APPLICATION: TRACKING STD OUTBREAKS 12

Example: F. Liljeros et al., The web of human sexual contacts
Nature 411 (2001).

1. Network members are surveyed and report their number of
partners. Partners remain anonymous.

2. This gives the degree sequence of the sexual contact network.

3. Data and behavioral information place restrictions on network
structure.
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DEGREE-BASED GRAPH CONSTRUCTION 13

Let π be a graphic sequence, and let N be the set of realizations of
π that satisfy some collection of restrictions or preferred
characteristics.

Degree-based Graph Construction Problems then ask:

1. Is N 6= ∅?

2. Is it possible to efficiently construct a member of N ?

3. Is it possible to efficiently construct all of N or determine |N |?

4. Is it possible to efficiently construct a typical member of N ?

(Sample N uniformly at random)
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2-COLOR DEGREE-BASED GRAPH RECONSTRUCTION 14

Suppose that members of a network reported how many of two
different types of interactions, call them red and blue interactions.

Further, suppose that no pair of members can have both a red and
a blue relationship.

Question
Is it possible to construct a network in which each member has the
prescribed number of red and blue interactions?
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AN EXAMPLE 15

πblue = (2, 2, 3, 2, 3, 2, 2) and πred = (2, 3, 0, 4, 2, 2, 3).
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The Asymptotics of the Potential Function

Joint with:

Timothy LeSaulnier
NSA

Casey Moffatt
CU Denver

Paul Wenger
Rochester Institute of Technology
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A graphic sequence π is potentially H-graphic if there is a
realization of π that contains H as a subgraph.

Example: π = (3, 2, 2, 2, 1) is potentially K3-graphic.
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SUBGRAPH INCLUSION 18

We are interested in studying subgraph inclusion in the
framework, inspired by the classical extremal literature.

Problem (The Turán Problem)
Determine

ex(n,H),

the maximum number of edges in an n-vertex graph that does not
contain H as a subgraph.



σ(π) 19

Given π = (d1, . . . , dn), let

σ(π) =

n∑
i=1

di.

Recall: σ(π(G)) = 2|E(G)|.
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THE ERDŐS-JACOBSON-LEHEL PROBLEM 20

Problem (Erdős-Jacobson-Lehel 1991)
Determine σ(H,n), the minimum even integer such that any n-term
graphic sequence with

σ(π) ≥ σ(H,n)

is potentially H-graphic.

We refer to σ(H,n) as the potential number of H .



THE ERDŐS-JACOBSON-LEHEL PROBLEM 21
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THE ERDŐS-JACOBSON-LEHEL PROBLEM 21

Problem (Erdős-Jacobson-Lehel 1991)
Determine σ(H,n), the minimum even integer such that any n-term
graphic sequence with

σ(π) ≥ σ(H,n)

is potentially H-graphic.

Problem (The Turán Problem (Restated))
Determine the minimum integer ex(n,H) such that every n-term
graphic π with σ(π) > 2ex(H,n) is forcibly H-graphic.



THE ERDŐS-JACOBSON-LEHEL CONJECTURE 22

Conjecture (Erdős-Jacobson-Lehel 1991)

σ(Kt, n) = (t− 2)(2n− t+ 1) + 2.

. 

.

.
K t−2

π=((n−1)t−2 ,(t−2)n−t+2)



SOME KNOWN RESULTS 23

σ(H,n) has been determined for several families, and various
specific graphs.

� Kt (E-J-L 1991; Gould, Jacobson, Lehel 1999; Li, Song 1998; Li,
Song, Luo 1999)

� Ks,t (Li, Yin 2003; Chen, Li, Yin 2004)

� Unions of Cliques (F, 2007)

� Graphs with α = 2 (F, Schmitt 2009)

� Many families and sporadic small graphs.

We determine σ(H,n) asymptotically for all H .
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BOUNDING σ(H,n) FOR GENERAL H 24

If F is an induced subgraph of H , we will write F ≤ H .

Let |H| = k. For
α(H) + 1 ≤ i ≤ k,

let
∇i(H) = min{∆(F ) | F ≤ H, |F | = i}.

In other words, every i-vertex induced subgraph F of H has
maximum degree at least∇i.
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πi(H,n) is the degree sequence of the following graph.

K k−i
(∇ i−1)
−regular

σ(πi) ≈ (2(k − i) +∇i − 1)n

Claim

σ(H,n) ≥ σ(πi).
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THE ASYMPTOTICS OF THE POTENTIAL FUNCTION 26

Let
σ̃(H) = max

α(H)+1≤i≤|H|
{2(k − i) +∇i − 1} .

Theorem (F, Moffatt, LeSaulnier, Wenger 2015+)
If H is a graph and n is a positive integer, then

σ(H,n) = σ̃(H)n+ o(n).
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THE ASYMPTOTICS OF THE POTENTIAL FUNCTION 27

Theorem (F, Moffatt, LeSaulnier, Wenger 2015+)
If H is a graph and n is a positive integer, then

σ(H,n) = σ̃(H)n+ o(n).

Theorem (The Erdős-Stone-Simonovits Theorem)
If H is a graph with chromatic number χ(H) ≥ 2, then

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2).



EXAMPLE: P7 28

α(P7)=4
∇5=1

σ̃4=(2(7−5)+1−1)=4

∇6=2
σ̃6=(2(7−6)+2−1)=3

∇7=2
σ̃7=(2(7−7)+2−1)=1

Claim
σ(P7, n) ≈ 4n
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. 
. 

.

α(K1,k−1) + 1 = |K1,k−1| = k

∇k = ∆(K1,k−1) = k − 1
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EXAMPLE: Kk 30

Let Kk be the complete graph of order k.

α(Kk) = 1

For 2 ≤ i ≤ k,

∇i = min{∆(F ) | F ≤ Kk, |F | = i} = ∆(Ki) = i− 1.

σ̃i(Kk) = (2(k − i) + (i− 1)− 1) = 2k − i− 2

Claim
σ(Kk, n) ≈ (2k − 4)n

E-J-L: σ(Kk, n) = (k − 2)(2n− k + 1) + 2
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LOOKING FORWARD: STABILITY 31

Stability - what does a graphic sequence π that

(a) is not potentially H-graphic, but

(b) has σ(π) close to σ(H,n)

look like?

Joint w/ C. Erbes, R. Martin and P. Wenger.

1. Editing Results (akin to Erdős 1970; Pikhurko & Taraz 2005)

2. Stable & non-stable families.
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Degree Sequences of Uniform Hypergraphs

Sarah Behrens, Charles Tomlinson
University of Nebraska-Lincoln

Catherine Erbes
Hiram College

Stephen Hartke
University of Colorado Denver

Ben Reiniger, Hannah Spinoza
University of Illinois at Urbana-Champaign



k-UNIFORM HYPERGRAPHS 33

A hypergraph G is k-uniform, or is a k-graph if every edge of G
contains exactly k vertices.

The degree sequence of a k-uniform hypergraph H is the list of
the degrees of vertices in H .
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A hypergraph G is k-uniform, or is a k-graph if every edge of G
contains exactly k vertices.

2

2 4

3

1

π(H) = (4, 3, 2, 2, 1)

The degree sequence of a k-uniform hypergraph H is the list of
the degrees of vertices in H .



HYPERGRAPHS AS NETWORKS 34

There are many complex networks modeled using hypergraphs:

1. Social Networks: family dynamics, group conversation,
overlapping communities.

2. Biological Networks: protein interactions, chemical reactions.

3. Education Networks: classroom collaborations, group
discussions.



k-GRAPHIC SEQUENCES 35

A nonnegative integer sequence π is k-graphic if it is the degree
sequence of a simple k-uniform hypergraph G.

Example: π = (3, 3, 1, 1, 1)

π is 3-graphic (but not 2-graphic).

The k-graph G k-realizes or is a k-realization of π.
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Question
Given a sequence of nonnegative integers π = (d1, . . . , dn), is π
graphic?



PRIOR WORK 37

Bhave, Bam and Deshpande (2009) give an Erdős-Gallai-type
characterization of loopless linear hypergraphs.

Numerous (nontrivial) necessary conditions:

� D. Billington (1988)

� Choudoum (1991)

� Achuthan, Achuthan, and Simanihuruk (1993)

Achuthan, Achuthan and Simanihuruk: None of these necessary
conditions are sufficient.
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A CHARACTERIZATION!! 38

Theorem (Dewdney 1975)
Let π = (d1, . . . , dn) be a nonincreasing sequence of nonnegative
integers. π is k-graphic if and only if there exists a nonincreasing
sequence

π′ = (d′2, . . . , d
′
n)

of nonnegative integers such that

1. π′ is (k − 1)-graphic,

2.
∑n

i=2 d
′
i = (k − 1)d1, and

3. π′′ = (d2 − d′2, d3 − d′3, . . . , dn − d′n) is k-graphic.



DEWDNEY VISUALLY 39

The (k − 1) graph obtained by deleting v1 from its incident edges
is the link of v1.

...

v
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Theorem (Dewdney 1975)
Let π = (d1, . . . , dn) be a nonincreasing sequence of nonnegative
integers. π is k-graphic if and only if there exists a nonincreasing
sequence

π′ = (d′2, . . . , d
′
n) the "link sequence"

of nonnegative integers such that

1. π′ is (k − 1)-graphic, - link seq. is (k − 1)-graphic

2.
∑n

i=2 d
′
i = (k − 1)d1 - link seq. can be "expanded" to include v1 with

the right degree

3. π′′ = (d2 − d′2, d3 − d′3, . . . , dn − d′n) is k-graphic.
completed link + v1 can be added to the rest of the graph to realize π.
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Havel-Hakimi requires that we only check one residual sequence:

(d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn).

Dewdney’s Theorem requires us to search all (k − 1)-graphic
sequences with sum (k − 1)d1 to test possible residual/link
sequences.

Problem
Efficiently characterize k-graphic sequences, or show that the associated
decision problem is NP -complete.

In lieu of an efficient characterization, we obtain several sharp
sufficient conditions.
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SUFFICIENT CONDITIONS 42

Theorem (BEFHRST 2013)
Let π = (d1, . . . , dn) be a nonincreasing sequence with

d1 = ∆ and dt ≥ ∆− 1.

If k divides Σ(di) and (
t− 1

k − 1

)
≥ ∆,

then π is k-graphic. This result is sharp.



SUFFICIENT CONDITIONS 43

Corollary (BEFHRST 2013)
Let π = (d1, . . . , dn) be a nonincreasing sequence with d1 = ∆, and let
p be the minimum integer such that

∆ ≤
(
p− 1

k − 1

)
.

If k divides Σdi and
σ(π) ≥ (∆− 1)p+ 1,

then π is k-graphic. This result is sharp up to a constant factor
dependent on k.

Proof uses poset methods akin to Aigner-Triesch (graphs - 1994),
Duval-Reiner (2002 - hypergraphs) and others.
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A LENGTH-BASED SUFFICIENT CONDITION 44

Theorem (Barrus, Hartke, Jao and West 2012)
Let π = (d1, . . . , dn) be a nonincreasing 2-graphic sequence with

d1 = ∆ and dn = δ.

If

n ≥ (∆ + δ − 1)2 − `
4δ

,

where
` = ∆ + δ + 1 (mod 2),

then π is 2-graphic.

Improves upon a result of Zverovich and Zverovich (1992) when
∆ + δ is even.
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Corollary (BEFHRST 2013)
Let π = (d1, . . . , dn) be a nonincreasing sequence with

d1 = ∆ and dn = δ,

and let p be the minimum integer such that

∆ ≤
(
p− 1

k − 1

)
.

If k divides σ(π) and

n ≥ (∆− 1)p−∆ + δ + 1

δ
,

then π is k-graphic.



2-SWITCHES: NAVIGATING THE REALIZATION SPACE 46

The 2-switch (or edge-exchange or rewiring or infusion)
operation:

u

v x

y u

v x

y

Theorem (Petersen 1891)
If G1 and G2 are realizations of a 2-graphic sequence π, then G1 can be
transformed into G2 by a finite sequence of 2-switches.



EDGE EXCHANGES IN k-UNIFORM HYPERGRAPHS 47

What about k-graphic sequences?

u

v x

y

uv
yx

ux
yv

u

v

y

x



A HYPERGRAPH 2-SWITCH 48

u

v

u

v

e

e'

e−u+v

e'−v+u

Theorem (BEFHRST 2013)
If G1 and G2 are realizations of a k-graphic sequence, then G1 can be
transformed into G2 by a finite sequence of 2-switches.
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u

v

u

v

e

e'

e−u+v

e'−v+u

This extends a result of Kocay and Li (2007) for k = 3.

There is an issue, however - the intermediate graphs between G1

and G2 may have multiple edges.



AN UNAVOIDABLE PROBLEM 50

An i-switch is exchanges i edges for i non-edges in a graph, while
maintaining the degree of each vertex.

Theorem (Gabelman 1961; BEFHRST 2013)
For every k ≥ 3, there is a k-graphic sequence π with distinct simple
realizations such that for any i < k, there is no i-switch that can be
performed to change one realization into another.



EXAMPLE: k = 3 51

� Weight vertices so that the
only 3-sets with zero sum are
rows or columns.

� Edges are rows and 3-sets
with positive sum.

� Nonedges are columns and
3-sets with negative sum.
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EXAMPLE: k = 3, CONT. 52
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� To exchange edge set F1 and
nonedge set F2, we need∑
e∈F1

∑
v∈e

wt(v) =
∑
e∈F2

∑
v∈e

wt(v).

� This means F1 ⊆ Rows and
F2 ⊆ Columns.

� Maintaining vertex degrees
requires F1 = Rows and
F2 = Columns.
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TRAVERSING THE SIMPLE REALIZATIONS 53

Problem
Determine a minimal family of edge exchanges such that, given
realizations H1 and H2 of a k-graphic sequence π, H1 can be
transformed into H2 by a sequence of edge exchanges such that each
intermediate k-graph is simple.



PICK A DIRECTION AND GO! 54

The realm of k-graphic sequences is wide open - go forth and
explore!

Theorem (Gu and Lai 2013)
Let π = (d1, . . . , dn) be a nonincreasing k-graphic sequence. Then π has
a t-edge-connected realization iff

� dn ≥ t

� d1 ≥ k(n−1)
k−1 if t = 1.

This extends results of Boonyasombat (1984) for t = 1 and
Edmonds (1964) for graphic sequences.


